Ложная Касатка.
Ложная косатка (Pseudorca crassidens) — это крупный морской млекопитающий из семейства дельфиновых, третий по величине представитель своего семейства.
Ложная косатка (Pseudorca crassidens) — это крупный морской млекопитающий из семейства дельфиновых, третий по величине представитель своего семейства.
Жуки-навозники из рода Scarabaeus существуют в условиях жёсткой конкуренции за пищу. Самцы формируют из помёта крупных млекопитающих шары, масса которых нередко превышает массу тела насекомого в пятьдесят раз, после чего откатывают добычу от места обнаружения. Сородичи-воры регулярно нападают на катателей, пытаясь отобрать готовые шары, поэтому эволюция благоприятствовала выработке стратегий максимально быстрого и прямолинейного бегства от скопления конкурентов. Однако двигаться по прямой без внешних ориентиров невозможно: ни живые организмы, ни машины не способны поддерживать заданный курс, полагаясь исключительно на внутренние сигналы тела — неизбежно накапливается ошибка, и траектория искривляется. Следовательно, жуки должны использовать какие-то внешние ориентиры, и учёных давно интересовало, какие именно.
Дневные виды жуков-навозников, как выяснилось, используют положение солнца и картину поляризации небосвода; сумеречные — луну и поляризованный лунный свет. Африканский вид Scarabaeus zambesianus стал первым насекомым, у которого экспериментально подтверждено использование поляризованного лунного света — сигнала в миллион раз более слабого, чем солнечный. Но что происходит в безлунные ночи? Исследовательская группа Эрика Уорранта из Лундского университета обнаружила, что ночной вид Scarabaeus satyrus сохраняет прямолинейную траекторию даже тогда, когда луны на небе нет, — но только при ясной погоде. Это означало, что жуки пользуются каким-то иным небесным ориентиром, видимым лишь в отсутствие облаков.
Гипотезу о звёздной навигации проверили в Йоханнесбургском планетарии. Жуков помещали в круглую ёмкость с зачернёнными стенками, исключавшими наземные ориентиры, а купол воспроизводил различные варианты ночного неба. Анализ траекторий показал, что насекомые удерживают курс под полным звёздным небом и при демонстрации одной лишь полосы Млечного Пути примерно одинаково хорошо. Напротив, когда на куполе проецировались восемнадцать ярчайших звёзд без галактической дуги, время пересечения арены увеличивалось более чем наполовину. Вывод оказался неожиданным: жуки ориентируются не по отдельным светилам, а по протяжённому градиенту яркости вдоль плоскости Галактики — то есть по Млечному Пути как целому.
Это открытие стало первым подтверждением использования Млечного Пути в качестве ориентира каким-либо животным и первым убедительным доказательством звёздной навигации у насекомых. Ранее было известно, что птицы, тюлени и человек способны ориентироваться по звёздам, однако все они полагаются на распознавание созвездий — характерных конфигураций отдельных светил. Стратегия сравнения яркости разных участков галактической полосы прежде не была описана ни у одного биологического вида.
Почему жуки избрали именно такой способ? Ответ кроется в строении их глаз. Размер сложных глаз и диаметр отдельных фасеток у ночного S. satyrus заметно превышают соответствующие показатели сумеречного S. zambesianus и дневного Kheper lamarcki. Крупные оптические элементы собирают больше света — критически важное преимущество на пределе чувствительности зрения. Однако разрешающая способность фасеточного глаза всё равно недостаточна, чтобы различать одиночные звёзды, тогда как суммарная яркость галактической дуги создаёт отчётливый контраст на фоне остального неба. Экспериментально установленный порог контрастной чувствительности составляет около тринадцати процентов — этого хватает, чтобы отличить более яркий южный участок Млечного Пути от северного и тем самым определить направление.
Но как именно жук «запоминает» нужный курс? Перед началом качения шара насекомые выполняют характерный ритуал: жук взбирается на вершину сферы, вращается вокруг вертикальной оси с короткими паузами, затем спускается и приступает к движению. Вероятность «танца» резко возрастает после столкновения с препятствием, принудительного изменения направления или экспериментального смещения небесных ориентиров. Учёные полагают, что во время ориентационного манёвра жук делает своеобразный «моментальный снимок» неба, фиксируя взаимное расположение солнца, луны и звёздной полосы, — а затем сверяется с этим снимком на протяжении всего пути.
Интересно, что у «танца» на шаре обнаружилась и вторая, совершенно иная функция. Инфракрасная съёмка показала, что температура поверхности влажного навоза заметно ниже температуры окружающей почвы благодаря испарению воды. Оказалось, что контакт передних лапок с охлаждённой поверхностью шара помогает жуку отводить избыточное тепло в жаркий день. Когда исследователи блокировали теплообмен силиконовыми накладками на лапки, частота подъёмов на шар снижалась на треть, а продолжительность непрерывного качения удваивалась — жуки перегревались медленнее и реже нуждались в охлаждении.
В 2013 году авторский коллектив — Мари Даке, Эмили Бэрд, Маркус Бёрн, Кларк Шольц и Эрик Уоррант — получил Игнобелевскую премию в номинациях «биология» и «астрономия» за открытие галактической ориентации у жуков-навозников. Несмотря на шуточный характер награды, результаты исследования важны как для понимания механизмов пространственной ориентации, так и для разработки систем машинного зрения, вдохновлённых биологическими прототипами.
Есть у открытия и тревожная сторона. Световое загрязнение от городов и дорог снижает контрастность Млечного Пути и способно нарушать навигацию ночных насекомых подобно естественной облачности. Поскольку жуки-навозники играют ключевую роль в переработке органических отходов и рыхлении почвы, деградация ночного неба представляет потенциальную угрозу экосистемам саванн и пастбищ — и заставляет по-новому взглянуть на проблему светового загрязнения.
По материалам:
https://www.researchgate.net/publication/235374810_Dung_Beetles_Use_the_Milky_Way_for_Orientation и производных научно-популярных статей из Science (AAAS), National Geographic, The Conversation, EarthSky.
На дне пролива у берегов Дании археологи обнаружили огромное средневековое судно. Шестисотлетний корабль представляет собой ког – округлое одномачтовое судно с прямым парусом, один из самых совершенных типов морского транспорта Средневековья. Длина составляет около 28 метров, ширина – 9 метров; по данным специалистов датского Музея кораблей викингов, это крупнейший ког из всех известных.
Находку сделали близ Копенгагена в проливе Эресунн, разделяющем Данию и Швецию. Учёные охарактеризовали судно как «суперкорабль», который мог перевозить сотни тонн груза с минимальными затратами в эпоху бурного развития торговли XIV–XV веков.
«Это – веха в морской археологии, – заявил руководитель раскопок Отто Ульдум. – Перед нами самый большой из известных когов, и он даёт уникальную возможность понять устройство крупнейших торговых судов Средневековья и быт их экипажей».
Судно нашли случайно в ходе исследования морского дна для строительства искусственного острова, который Дания планирует возвести у Копенгагена. Расчистив, по словам учёных, «вековые наслоения песка и ила», специалисты обнажили контуры корабля и дали ему имя Svælget 2 по названию канала, где он покоился.
Svælget 2 прекрасно сохранился на глубине 13 метров. Песок защитил правый борт, на котором уцелели фрагменты хрупкого такелажа – подобная сохранность не имеет аналогов среди прежних находок когов. Помимо этого, археологи выявили кирпичный камбуз, впервые зафиксированный на средневековом судне в датских водах; он позволял команде готовить горячую пищу на открытом огне. Среди артефактов – кухонная утварь (горшки, миски), а также личные вещи моряков: гребни и чётки.
Груз пока не найден. Ульдум отметил, что у трюма отсутствовала крышка, поэтому бочки с товарами, вероятно, всплыли при крушении. Впрочем, поскольку никаких признаков военного использования не выявлено, исследователи полагают, что ког был торговым.
Svælget 2 построили в 1410 году – датировку установили методом дендрохронологии, анализируя годичные кольца древесины. Сопоставив результаты с ранее опубликованными сериями, команда выяснила, что обшивка происходит из Польши, а каркас – из Нидерландов. Особенности конструкции говорят о том, что доски привозились издалека, тогда как детали каркаса изготавливались на месте постройки; это свидетельствует о разветвлённой системе торговли лесоматериалами в Северной Европе.
Гигантское судно предназначалось для опасного плавания из Нижних земель (территория современных Нидерландов) к торговым городам Балтики и позволяло перевозить на дальние расстояния объёмные товары повседневного спроса – соль, древесину, кирпич, продовольствие, – тогда как прежде подобные перевозки были рентабельны лишь для предметов роскоши.
«Ког произвёл переворот в североевропейской торговле, – говорит Ульдум. – Он дал возможность перемещать грузы в масштабах, невиданных прежде».
Ютубер Зак Армстронг с канала LabCoatz потратил почти год на изучение и воспроизведение секретной формулы Coca-Cola — одного из самых тщательно охраняемых коммерческих секретов в мире. Как он отмечает в начале видео, компания принимает экстремальные меры защиты: демонстрирует гигантское стальное хранилище на экскурсиях, а ингредиенты доставляются без маркировки с разных производств, сотрудники которых не знают, что именно они производят.
Цель проекта звучала дерзко: создать химически идентичный напиток с тем же вкусом и рассказать всем в интернете, как его приготовить.
Многие считают эту затею безнадёжной — все прежние попытки проваливались. Зак перепробовал существующие рецепты-клоны, и ни один даже близко не напоминал настоящую колу. Однако в статье Forbes 2016 года высказывалось предположение, что рецепт можно расшифровать с помощью масс-спектрометрии, хотя автор полагал, что такое под силу лишь крупным корпорациям вроде Pfizer.
У Зака нашлось два друга-ютубера с разными масс-спектрометрами, причём один из них — профессор колледжа.
С юридической стороны тоже всё оказалось просто: Coca-Cola не патентовала рецепт, ведь для патента пришлось бы раскрыть формулу. Поэтому, пока никто не начнет торговать продуктом под тем же брендом, что и Coca-Cola, компания не сможет воспрепятствовать этому.
Более 99% состава Coca-Cola по массе давно не секрет:
Вся загадка кроется в пункте «натуральные ароматизаторы».
На 2015 год единственный достоверно установленный натуральный ароматизатор — экстракт декокаинизированных листьев коки. Компания Stepan из Нью-Джерси — одно из немногих предприятий в США, имеющих разрешение на работу с листьями коки. Угадайте, кому она сбагривает экстракт после извлечения кокаина.
Экстракт орехов колы когда-то входил в состав, но его заменили очищенным кофеином.
Зак пытался раздобыть легальный декокаинизированный экстракт листьев коки, но безуспешно: компании вроде Power Leaves не отвечали на электронные письма, а посылку с перуанского сайта задержали на границе.
Отправной точкой послужили опубликованные рецепты колы, в том числе оригинальный рецепт Пембертона 1886 года. Базовый набор вкусов: апельсин, лимон, лайм, кориандр, мускатный орех, корица, ваниль и нероли.
Встречаются также упоминания чёрного перца, лаванды, гвоздики и листьев каффир-лайма.
Зак закупил все ароматизаторы в виде эфирных масел — в пищевой промышленности это обычная практика: эфирные масла удобно точно дозировать и сочетать вкусы. Микропипеткой он отмерял нужные объёмы масел, растворял их в пищевом спирте (чтобы масло не сбивалось в капли) и добавлял в газировку с заданными пропорциями кислоты, кофеина, карамельного красителя и сахара.
Для анализа Зак воспользовался ортогональными массивами Тагути — математическими таблицами, которые позволяют выявлять закономерности при небольшом числе опытов. Результаты выходили противоречивыми (а на вкус — часто отвратительными), но кое-что важное удалось выяснить.
Ключевые вкусы: мускатный орех, корица и кориандр создают характерный «коловый» вкус, однако раскрываются только на цитрусовой базе из лимона и лайма.
Отвергнутые ингредиенты:
Винс с канала Neptunium и Бен с канала Aspect Everything исследовали Coca-Cola, ингредиенты Зака и похожие напитки (включая Pepsi) на масс-спектрометрах.
Как это работает: прибор разделяет образец на фракции методом хроматографии, ионизирует компоненты и пропускает их через магнитное поле. Подобно тому как призма раскладывает свет,...
... магнитное поле разделяет ионы по массе, формируя уникальный «отпечаток» каждого вещества.
Что обнаружили:
Масс-спектрометрия показывает относительную интенсивность, а не концентрацию, поэтому Зак обратился к статье из академического журнала Journal of Agricultural and Food Chemistry с измеренными концентрациями практически всех ароматических веществ в Coca-Cola.
Главные выводы:
Гвоздика исключена. Эвгенол и его эфиры составляют 80–90% гвоздичного масла, однако их содержание в коле соответствует лишь следовым количествам из мускатного ореха и корицы.
Нероли и лаванда исключены. Решающую роль сыграли энантиомеры линалоола: R-форма преобладает в лаванде и нероли, S-форма — в кориандре. В Coca-Cola господствует именно S-линалоол, а R-линалоола ровно столько, сколько поступает из цитрусовых масел.
Уксусная кислота. Неожиданная находка — третий по массе ароматизатор. Посовещавшись с Дарси с канала Art of Drink и обнаружив уксус в подлинном рецепте 1950-х годов, Зак убедился, что его добавляют намеренно, хотя и в ничтожных количествах (миллионные доли).
Некоторые соединения в эфирных маслах не обнаруживались: фенхол и альфа- и 4-терпинеол, придающие травянистые, сосновые и освежающие нотки вкуса, которые игнорировались всеми, кто пытался воссоздать рецепт кока-колы раньше. Проблему с альфа-терпинеолом решило нагревание напитка. Фенхол Зак просто купил в чистом виде.
В качестве источника 4-терпинеола, заменяющего листья коки, Зак выбрал масло чайного дерева — оно почти наполовину состоит из 4-терпинеола, а прочие компоненты совпадают с найденными в Coca-Cola.
Вкус заметно улучшился, но напиток по-прежнему напоминал скорее диетическую колу, чем обычную.
После нескольких месяцев опытов, когда сифон SodaStream вышел из строя и пришлось покупать второй, Зак был на грани отчаяния. И тут его осенило: экстракт листьев коки — по сути, чай, а в чае содержатся танины.
Танины придают сухой, вяжущий привкус и приглушают сладость. Они нелетучи, поэтому не видны на газовом масс-спектре — вот почему их так долго не удавалось обнаружить. В очищенном виде танины продаются для виноделия.
Итог: масс-спектры Coca-Cola и реплики Зака почти совпали.
По его мнению, вкус Lab Cola ближе к классической Coca-Cola, чем у современной колы в стеклянных бутылках или диетических версий.
Эфирные масла, сахар, газированная вода, кофеин, карамельный краситель, пищевой спирт, 85%-ная фосфорная кислота, глицерин, винные танины, 5%-ный уксус, ванильный экстракт, фенхол.
Смесь желательно выдержать один-два дня. Затем 20 мл ароматической основы разводят пищевым спиртом до одного литра. Этого хватит более чем на 5000 литров газировки.
В примерно 200 мл горячей воды растворить:
Довести объём водой до одного литра.
Зак организовал для своей колы слепые и открытые дегустации. Участники с трудом отличали Lab Cola от настоящей Coca-Cola.
Те, кто регулярно пьёт Coca-Cola, чаще угадывали реплику, но общий вывод таков: Lab Cola можно спутать с Coca-Cola (но не с Pepsi). Когда напиток пробовали отдельно, без прямого сравнения, его принимали за оригинал — в отличие от рецепта Пембертона, Open Cola и прочих клонов.
Проект LabCoatz показывает, что современные аналитические методы в сочетании с упорством позволяют воспроизвести даже самые охраняемые коммерческие секреты. Успех обеспечили несколько факторов: масс-спектрометрия для идентификации соединений, научная литература для определения концентраций, понимание химии энантиомеров для отсева ложных ингредиентов и — самое главное — догадка о роли танинов, невидимых для газовой хроматографии.
Актуальную версию рецепта автор обещает поддерживать в описании под видео.
На выставке CES 2026 в Лас-Вегасе компания Boston Dynamics официально представила коммерческую версию своего знаменитого робота-гуманоида Atlas, ознаменовав переход системы от исследовательского прототипа к готовому к продаже продукту. Впервые за всю историю компании Atlas продемонстрировали публично — робот поднялся с пола, плавно ходил по сцене, махал зрителям и поворачивал голову подобно сове. «Мы создали лучшего робота за всю нашу историю», — заявил генеральный директор Boston Dynamics Роберт Плейтер. О намерении выпустить коммерческого гуманоида компания объявила ещё в 2024 году, когда стало очевидно: последние достижения в области ИИ значительно ускорили процесс обучения и развёртывания роботов в реальных условиях.
По габаритам производственная версия Atlas превосходит исследовательские прототипы и рассчитана на непрерывную коммерческую эксплуатацию: рост робота составляет 1,9 метра при размахе рук 2,3 метра. Вылет руки достигает 7,5 футов, грузоподъёмность — 110 фунтов, а рабочий температурный диапазон простирается от минус 20 до плюс 40 градусов по Цельсию. Количество степеней свободы увеличилось до 56 — больше, чем 50, заявленных в апреле 2025 года, — причём все суставы способны вращаться полностью. Пятое поколение Atlas полностью электрическое и оснащено передовыми приводами, обеспечивающими превосходную силу и расширенный диапазон движений, включая вращение на 360 градусов в ключевых суставах. Для непрерывной работы в течение дня робот сможет автономно менять собственные батареи.
Первый парк роботов Atlas уже поставлен компании Hyundai — автопроизводитель владеет 88 процентами Boston Dynamics и стал первым получателем серийных гуманоидов. Ещё в октябре 2025 года на заводе Hyundai в Джорджии проходили испытания исследовательской модели, самостоятельно сортировавшей багажники для сборочной линии. Начиная с 2028 года Hyundai планирует выпускать по 30 000 роботов Atlas ежегодно на своём заводе Metaplant в Саванне, штат Джорджия; изначально гуманоиды займутся сортировкой деталей, а к 2030 году перейдут к сборке компонентов. Заказчики за пределами Hyundai и Google начнут получать роботов в начале 2027 года. Ориентировочная стоимость Atlas — около 420 000 долларов, что позиционирует его как премиальное решение для автоматизации.
Важнейшим элементом стратегии развития стало партнёрство с Google DeepMind: робот будет использовать модели искусственного интеллекта Gemini Robotics для навигации, идентификации объектов и манипуляций в незнакомых средах. Спустя почти десятилетие после продажи Boston Dynamics компании SoftBank две организации вновь работают вместе. Вместо традиционного ручного программирования Atlas обучается с помощью VR-гарнитур, костюмов захвата движений и симуляций — принципиально новый подход к подготовке гуманоидных роботов для реальных задач. При всём интересе к потребительскому рынку, CEO Плейтер подчеркнул: стратегию внедрения гуманоидов сразу в дома компания считает ошибочной из-за высоких затрат, ограниченных возможностей и отсутствия стандартов безопасности, хотя в долгосрочной перспективе Boston Dynamics планирует выйти и на домашний сегмент.
Как отмечает доктор Флориан Мейер, руководитель исследовательской группы по технологиям горения в Центре прикладных космических технологий и микрогравитации (ZARM), «пожар на борту космического корабля — один из самых опасных сценариев в космических миссиях», поскольку «практически нет возможности добраться до безопасного места или покинуть космический корабль». В условиях замкнутого пространства и ограниченных ресурсов понимание поведения огня в микрогравитации становится вопросом жизни и смерти.
Микрогравитация существенно влияет на характер горения. На Земле горячие газы от пламени поднимаются вверх, а гравитация притягивает более холодный и плотный воздух к основанию пламени, создавая характерную вытянутую форму и эффект мерцания. В микрогравитации этот конвективный поток не возникает, что упрощает процесс горения и приводит к образованию сферического пламени. Оно горит медленнее, при более низкой температуре (менее 480°C) и требует меньше кислорода. Сферичность объясняется тем, что пламя питается процессом молекулярной диффузии: горение происходит на границе между топливом и воздухом, и вся поверхность пламени становится зоной реакции. Цвет тоже меняется — без гравитации углеродные цепочки не сгорают полностью, и пламя становится голубым и тусклым.
Важнейшую роль в поведении огня на космических аппаратах играет вентиляция. Вентиляторы заменяют естественную конвекцию и подают воздух, необходимый для поддержания горения, при этом огонь может распространяться в любом направлении. Если на Земле можно затоптать свечу, то на космическом корабле это способно ускорить горение: создаётся воздушный поток, и пламя в условиях низкой гравитации может перескочить на другой материал.
Одним из важнейших открытий стал феномен «холодного пламени». Такое пламя, горящее при экстремально низких температурах, практически невозможно создать на Земле, однако в микрогравитационной среде МКС оно возникает легко. Непредварительно смешанное холодное пламя было впервые обнаружено в 2012 году во время экспериментов FLEX. Исследователи выяснили, что определённые виды жидкого топлива после затухания способны спонтанно воспламеняться повторно, при этом последующее пламя горит при более низких температурах и остаётся невидимым невооружённым глазом. В отличие от обычного пламени, производящего углекислый газ и воду, холодное пламя выделяет угарный газ и формальдегид. Его главная опасность — невидимость: не выделяя интенсивного тепла, оно продолжает потреблять кислород и производить токсичные вещества, способные отравить весь экипаж. Учёный NASA Дэниел Дитрих назвал это «одним из крупнейших открытий не только в программе микрогравитации, но, вероятно, за последние 20–30 лет исследований горения».
Исторический опыт подтверждает серьёзность угрозы. 24 февраля 1997 года шесть членов экипажа станции «Мир» столкнулись с пожаром системы генерации кислорода. Когда космонавт Лазуткин активировал твёрдотопливный генератор в модуле «Квант-1», канистра загорелась, выбросив трёхфутовое пламя с искрами и кусками расплавленного металла, заполнив модуль густым дымом. Генератор горел около 14 минут, блокируя путь эвакуации к пристыкованному «Союзу». Американский астронавт Джерри Линенджер описал огонь как «бушующий паяльник» и отметил: «Я никогда не видел, чтобы дым распространялся так, как он распространялся на "Мире"». Расследование установило, что причиной стал материал латексной перчатки, случайно попавший в канистру и вызвавший загрязнение углеводородами. Системы жизнеобеспечения очистили атмосферу за несколько часов, экипаж не пострадал, а уроки инцидента были учтены при проектировании МКС.
NASA недавно завершило финальную миссию эксперимента Saffire, поставив точку в восьмилетней серии исследований поведения огня в космосе. Хотя агентство проводило эксперименты на шаттлах и МКС, риски для экипажа вынуждали ограничивать их масштаб. Как отмечают исследователи, «Saffire стал крупнейшим рукотворным пожаром в космосе» и «позволил безопасно сжигать более крупные образцы материала». Результаты показали, что пламя быстро достигает стабильного размера и скорости горения, тогда как на Земле оно обычно продолжает расти. Выяснилось также, что размер космического корабля влияет на огонь сильнее ожидаемого, а повышение температуры и давления менее значимо, чем накопление угарного и углекислого газов. Исследователи подчёркивают: подобная работа — определение порога опасности пожара для экипажа — проводилась для зданий, самолётов, поездов, шахт, подводных лодок, но для космических кораблей таких исследований до Saffire не было. Именно быстрое образование токсичных газов представляет главную угрозу: они способны вывести из строя экипаж задолго до того, как станет ощутимым недостаток кислорода.
Содержание кислорода в атмосфере существенно влияет на пожарную опасность. Программа «Аполлон» использовала 100% кислорода, «Скайлэб» — 70%. С тех пор NASA перешло на значительно более низкие концентрации. На МКС уровень кислорода составляет 21%, как на Земле, однако будущие корабли с пониженным атмосферным давлением будут использовать до 35%, что резко увеличивает риск: огонь может распространяться втрое быстрее, чем в земных условиях.
Исследования продолжаются: эксперимент SoFIE изучает воспламенение твёрдых материалов, а FM2 станет первым экспериментом по горению на другом небесном теле — на Луне при одной шестой земной гравитации. Лунные условия находятся вблизи границы воспламеняемости, что предполагает значительный риск для будущих миссий.
Стратегия пожарной безопасности строится на нескольких принципах. Предотвращение заключается в устранении одного из трёх факторов горения: топлива, кислорода или источника воспламенения, однако абсолютной защиты не существует, поэтому необходимы также обнаружение, реагирование и тушение. Каждый материал на борту проходит строгие испытания — от изоляции проводов до ткани скафандров. Материалы отбираются за низкую воспламеняемость, самозатухающие свойства и минимальное выделение токсичных паров. На МКС действуют две системы пожаротушения: водяная пена в российских модулях и углекислый газ в американском сегменте. NASA разрабатывает метод «водяного тумана», основанный на современных наземных технологиях. При срабатывании датчиков дыма первым шагом становится отключение вентиляции в поражённом модуле.
Программа Saffire позволила понять поведение огня в условиях, когда у астронавтов нет возможности покинуть корабль или быстро вернуться на Землю. Полученные данные станут основой для обеспечения безопасности миссий Artemis на Луну и будущих экспедиций на Марс.
Мой последний научпоп 2025 года.
Перевод материалов AsapSCIENCE
Человеческие яички различаются по размеру, но новые исследования показывают, что размер и форма твоих яиц могут рассказать о тебе больше, чем ты думаешь. Сегодня мы объясним шокирующую науку, стоящую за человеческими тестикулами.
В отличие от слона, у которого яички расположены глубоко внутри тела, у нас, приматов, они висят снаружи в мешочке.
И по сравнению с дельфинами, чьи яички огромны и составляют около 4% массы тела (эквивалент человеческих яичек весом примерно 4,5 кг), можно подумать, что наши в целом маленькие.
Но чтобы лучше понять размер человеческих яичек и как твоё хозяйство соотносится с другими, нам следует смотреть не на другие виды вроде дельфинов, а на наших собратьев-приматов.
Относительно массы тела человеческое яичко в три раза больше, чем у гориллы, но составляет лишь пятую часть от яичка шимпанзе.
Различия в размере яичек среди приматов связаны с двумя научными концепциями: предбрачным и послебрачным половым отбором.
Предбрачный половой отбор у приматов включает «знаки статуса» — физические черты, сигнализирующие о социальном доминировании и потенциале репродуктивного успеха самца. По сути, знаки статуса — это внешние особенности, помогающие самцам приматов спариваться.
Примеры включают большие носы носачей: чем больше нос, тем выше шансы на спаривание.
Другие примеры: чем краснее пятно на груди у гелад или чем шире щёки у орангутанов.
Некоторые исследования указывают, что густота бороды у Homo sapiens может быть предбрачным знаком статуса.
Послебрачный половой отбор связан с отбором, происходящим после спаривания — например, качество и количество производимой спермы в самих яичках. Успешность самца зависит от комбинации предбрачного и послебрачного успеха.
Что удивительно: исследования показали, что чем ярче выражен знак статуса, тем меньше яички. Большие щёки — маленькие яйца. Большой нос — маленькие яйца. Чем краснее пятно — тем меньше яички. Есть борода - ...
Это побудило исследователей провести дополнительные исследования, в том числе, обезъян-ревунов. И снова было обнаружено, что ревуны, у которых наиболее развита щитовидная железа и гортань; могущме издавать самые громкие низкочастотные звуки для привлечения самок – оказались обладателями самых маленьких яичек.
Даже исследование человеческих яичек выявило корреляцию с высотой голоса: мужчины с более низким, привлекательно звучащим голосом имели тенденцию к более низкому количеству сперматозоидов.
Так что же происходит? Скорее всего, это связано с эволюционным компромиссом между предбрачным и послебрачным половым отбором — энергия, необходимая для поддержания этих физических знаков статуса, против энергии для поддержания массы яичек.
Установлено, что чем больше яички, тем больше производится спермы: в том числе, и у людей мужчины с более крупными яичками обычно производят больше спермы, ввиду того, что более крупные яички содержат больше семенных канальцев — ткани, производящей сперму.
В животном мире самцы, вкладывающие больше энергии в знаки статуса, имеют больший доступ к самкам, что снижает их потребность вкладываться в размер яичек, поскольку конкуренция спермы между самцами меньше. Большой нос гарантирует спаривание, поэтому им не нужны большие яйца для производства большего количества спермы. Таким образом, увеличение инвестиций самцов в знаки статуса снижает конкуренцию спермы, что ослабляет давление отбора на производство спермы и в итоге уменьшает размер яичек.
Экстраполируя на людей: возможно, мужчины с более густой бородой действительно имеют более скромные «фамильные драгоценности». Адекватных исследований на эту тему нет, но один опрос и исследование показали, что мужчины с более крупными яичками тратили меньше времени на уход за детьми, меньше меняли подгузники и меньше заботились о семье по сравнению с мужчинами с яичками поменьше. Маленькие яйца — лучшие отцы?
Это перекликается с другими исследованиями приматов. У горилл и колобусов яички меньше, потому что они более склонны к моногамии. Тогда как обезьяны, спаривающиеся с множеством партнёров, вроде макак, имеют более крупные яички из-за конкуренции спермы. Возможно, мужчины с большими яйцами — плохие отцы, потому что менее склонны к моногамии и поэтому менее заботливы к своим семьям. Это экстраполяция, но, может быть, если ты ищешь преданного партнёра, а у него большие обвислые яйца — пора бежать. Опять же, достоверных исследований на эту тему нет.
А что насчёт обвислости? Что если одно висит ниже другого? Опущение мошонки у человека, вероятно, связано с тем, что производство и хранение спермы оптимально при более низких температурах. Поэтому кожа мошонки такая тонкая, а артерии, снабжающие кровью мошонку, расположены рядом с венами — ещё один механизм охлаждения и обогрева для поддержания яичек в прохладе.
В целом температура мошонки на 2,5–3°C ниже температуры тела, что оптимально для создания спермы. И поэтому же, когда холодно, мошонка сжимается и подтягивается ближе к телу. Есть мышцы, называемые кремастерными, которые сокращаются на холоде и расслабляются в тепле для регуляции температуры.
Интересно, что каждое яичко движется по своей орбите, чтобы максимизировать доступную поверхность мошонки для охлаждения. Поэтому наблюдается асимметрия, когда яички пытаются охладиться независимо друг от друга.
Также мошонка подтягивается, и яички приближаются к телу при возбуждении — вероятно, чтобы согреть сперму и подготовить её к эякуляции во влагалище. Но это также имеет эволюционное преимущество: держать мошонку и яички ближе к телу во время энергичных движений секса, чтобы не повредить их.
Что касается обвислости мошонки — она варьируется от мужчины к мужчине. Как у людей разный размер рук, так и семенные канатики бывают разной длины, а мошонка — с разной площадью поверхности и объёмом, что иногда приводит к более обвислому положению по умолчанию. Не знаю, что ещё сказать, кроме одного: все стареют, и кожа теряет эластичность и коллаген по всему телу. Так что да, с возрастом твои яйца станут более обвислыми. Вот на что можно с нетерпением ждать. Наслаждайтесь, народ.
И если ты когда-нибудь замечал, что одно яичко больше другого — это тоже совершенно нормально. На самом деле у большинства мужчин правое яичко немного больше левого, тогда как левое чаще висит ниже. Опять же, всё это связано с твоей личной анатомией.
В конце концов, если твои яйца висят низко, если они болтаются туда-сюда, если ты можешь завязать их в узел, если можешь завязать бантиком, если можешь закинуть их через плечо — у тебя, вероятно, мировой рекорд Гиннесса, и стоит кому-нибудь позвонить.
Но серьёзно, как приматы, форма, размер и обвислость наших яичек — это увлекательная часть нашей эволюционной истории. Есть даже недавние исследования полового отбора, доказывающие, что размер наших яичек относительно других частей тела с большей вероятностью изменится под давлением эволюции. Поэтому в будущем наши яйца могут уменьшиться или увеличиться. А глядя в прошлое — у наших предков сменилось множество разных форм.
Гренландские киты весят в среднем от 75 до 100 тонн и занимают второе место по массе среди всех животных, уступая лишь синему киту. Это единственный вид усатых китов, обитающий исключительно в Северном Ледовитом океане, где их массивный череп служит тараном для пробивания морского льда. Чтобы выживать в столь суровой среде, гренландские киты в ходе эволюции обзавелись самым толстым слоем подкожного жира среди всех китообразных. Именно этот жировой слой в сочетании с невысокой максимальной скоростью плавания — всего около 10 километров в час — и сделал их излюбленной добычей китобоев. Промышленный китобойный промысел гренландских китов фактически прекратился в начале XX века, полностью сойдя на нет к 1921 году. К тому моменту популяция сократилась до менее чем трёх тысяч особей. К счастью, после прекращения промысла некоторые популяции существенно восстановились: в западной части Арктики численность гренландских китов оценивается сегодня примерно в 12 500 особей.
Гренландские киты весят в среднем от 75 до 100 тонн и занимают второе место по массе среди всех животных, уступая лишь синему киту. Это единственный вид усатых китов, обитающий исключительно в Северном Ледовитом океане: массивный череп позволяет им пробивать морской лёд. Чтобы выживать в столь суровой среде, гренландские киты в ходе эволюции обзавелись самым толстым слоем подкожного жира среди всех китообразных. Именно этот жировой слой в сочетании с невысокой скоростью плавания — всего около 10 километров в час — и сделал их излюбленной добычей китобоев. Промышленный китобойный промысел гренландских китов фактически прекратился в начале XX века, полностью сойдя на нет к 1921 году. К тому моменту популяция сократилась до менее чем трёх тысяч особей. К счастью, после этого некоторые популяции существенно восстановились: в западной Арктике численность вида оценивается сегодня примерно в 12 500 особей.
В 2007 году у одного гренландского кита обнаружили фрагмент гарпуна, застрявший в кости между шеей и лопаткой. Находку отправили куратору Музея китобойного промысла в Нью-Бедфорде, штат Массачусетс, и тот установил, что гарпун был запатентован в 1879 году и, по всей видимости, выпущен около 1890-го. Выходит, этот кит пережил охотничью экспедицию Викторианской эпохи, Первую мировую войну, высадку человека на Луну, изобретение интернета — и всё ещё бороздил арктические воды, когда появился первый iPhone. При этом, несмотря на возраст от 115 до 130 лет, кит вовсе не был дряхлым стариком: он сохранял здоровье и репродуктивную активность, то есть по меркам своего вида оставался ещё относительно молодым. Эта находка поставила перед учёными множество вопросов о том, сколько на самом деле живут эти животные.
Один из методов определения возраста основан на изучении глаз. Хрусталик гренландского кита на протяжении всей жизни накапливает слои белка — наподобие луковицы (а ещё, как известно, слои есть у огров*). Анализируя распад этих белков, учёные определили возраст образцов, взятых в период с 1978 по 1996 год.
Большинству особей было от 135 до 172 лет, однако одному киту, по расчётам, исполнилось 211 — более чем вдвое больше, чем способен прожить любой другой кит, да и любое другое млекопитающее. По долголетию среди позвоночных гренландские киты уступают только гренландским полярным акулам.
Важно различать максимальный и средний срок жизни. Способность дожить до преклонного возраста ещё не означает, что животное действительно до него доживёт. Косатки теоретически могут прожить 80–90 лет, однако в популяции южных резидентных косаток самки живут в среднем 29 лет, а самцы — 17, и это без учёта того, что менее половины детёнышей доживают до года. Ближайший родственник гренландского кита — южный гладкий кит, находящийся на грани исчезновения. Считается, что он мог бы дожить до 130 лет, но в среднем живёт лишь 22 года — из-за столкновений с судами и попадания в стационарные рыболовные снасти. И если гренландский кит способен прожить 211 лет, остаётся лишь представить, какой долгой могла бы быть продолжительность его жизни, если бы мы по-настоящему занимались его защитой.
На одном рандомном ютуб-канале, посвещённом компьютерным играм, иногда выходят ролики с эмуляцией голосов динозавров. В последний раз они выходили в 2021 году, но вот, внезапно, исследования обновились.
"Более трех лет назад было опубликовано оригинальное исследование доисторической вокализации. За прошедшее время работа привлекла значительное внимание, породив множество вопросов о процессе создания звуков и достоверности полученных результатов. Настало время внести ясность в этот вопрос.
Представленное исследование основывается на методологии, аналогичной той, которую разработала Джулия Кларк. В 2017 году она объединила гулкий крик евразийской выпи с рычанием китайского крокодила, масштабировав полученный звук до предполагаемых размеров тираннозавра (около 12 метров или 40 футов в длину). Результатом стал зловещий низкий гул.
Выбор именно таких образцов обусловлен отсутствием сиринкса или сложного голосового органа, что, согласно современным исследованиям, характерно для большинства доисторических динозавров. Сиринкс появился относительно поздно в эволюции динозавров, вероятно, около 67-69 миллионов лет назад у непосредственных предков современных птиц. Птицы издают звуки с помощью сиринкса — органа, образованного модификацией усиленных колец в основании трахеи, где она разделяется на бронхи.
Используя усовершенствованную методологию, первоначальные результаты были уточнены для достижения большей точности и теперь готовы к публикации.
Исходя из предположения, что древние животные не обладали сложными голосовыми органами, следующие звуки являются наиболее научно обоснованными из возможных.
ВАЖНОЕ ПРЕДУПРЕЖДЕНИЕ:
Просим не перезагружать данные аудиозаписи и не использовать их без разрешения. Звуки защищены авторскими правами, их несанкционированное использование повлечет предупреждения и, при необходимости, правовые последствия.
В 2021 году, на начальной стадии исследования, был завершен первый этап перемасштабирования вокализации нескольких видов рептилий и птиц, не имеющих сиринкса. Создавались различные масштабирования, подходящие для нескольких видов вымерших динозавров.
На втором этапе применялся аналогичный подход, однако ограничения по голосовым органам были сняты — на случай, если сложные вокальные структуры будут обнаружены в будущем.
Хотя результаты обеих методик оказались захватывающими, вторая принесла более поразительные открытия. Вместо рычания с открытым ртом ученые предполагают, что многие динозавры могли издавать звуки с закрытым ртом, надувая пищевод или трахеальные мешки при закрытой пасти, создавая низкочастотные свистящие, рычащие или воркующие звуки.
Впервые услышав эти реконструированные звуки, можно было почувствовать, как разгорается воображение. Сегодня подобные ощущения разделяют миллионы людей по всему миру!
Благодарим всех, кто следил за ходом этого исследовательского путешествия!"
Upd. Перерыв в выходе комплексных роликов также был связан с болезнью автора.
Моллюск Минг представляет собой старейшее известное неколониальное животное с точно установленным возрастом. Особь вида Arctica islandica была обнаружена в 2006 году исследовательской группой под руководством Пола Батлера из университета Бангора у северного побережья Исландии. Животное погибло в результате заморозки при стандартной процедуре консервации образцов.
Первоначальная оценка возраста составляла 405 лет, однако в 2013 году был проведен повторный анализ с применением усовершенствованных методов подсчета колец роста и радиоуглеродного анализа. Окончательно установленный возраст составил 507 лет, что означает появление моллюска на свет в 1499 году. Техническая сложность определения возраста заключалась в необходимости подсчета сотен годовых колец на площади в несколько миллиметров.
Название "Минг" было присвоено в честь китайской династии Мин, правившей в период рождения моллюска. До этого открытия рекордсменом по продолжительности жизни среди животных согласно Книге рекордов Гиннесса считался 220-летний двустворчатый моллюск, найденный в 1982 году.
Определение возраста проводилось пересчетом годовых слоев раковины, формирующихся аналогично кольцам в древесине в период активного роста в летние месяцы. Исследователи собирали образцы моллюсков для изучения климатических изменений за последние столетия путем анализа структуры их раковин.
Научная ценность находки заключается в возможности реконструкции климатических условий и температуры морской воды за период в пять столетий. Долголетие данного вида объясняется крайне медленным метаболизмом и низким потреблением кислорода. Биологи предполагают существование среди представителей вида ещё более старых особей.
сам разлил = сам дебил
Ну хз. При повешении волосы оставляют распущенными? Есть тут специалисты?
Мешок почему на голову не надели? С завязкой на шее.
Вот этот момент, когда после маленькой капли - потоп. Самое интересное